
MIT

What You “Know” about 

Software and Safety is Probably 

Wrong
Prof. Nancy G. Leveson

© Nancy G. Leveson, 7/2020



Understanding The Problem

“It’s never what we don’t know that stops us.   
It’s what we do know that just ain’t so.”



General Definition of “Safety”

• Accident = Mishap = Loss: Any undesired and 
unplanned event that results in a loss

– e.g., loss of human life or injury, property damage, 
environmental pollution, mission loss, negative business 
impact (damage to reputation, etc.), product launch delay, 
legal entanglements, etc.  [MIL-STD-882]

– Includes inadvertent and intentional losses (security)

• System goals vs. constraints (limits on how can achieve the 
goals)

• Safety: Absence of losses



Safety Engineering is about Hazards

• Hazard: A system state or set of conditions that, together with 
a particular set of worst-case environmental conditions, will 
lead to an accident.

• Examples:

– Release of nuclear materials

– Friendly fire

– Loss of control of an aircraft

– Violation of minimum separation between autos/planes

• Software is not unsafe. It can contribute to a hazard, but it 
does not explode, catch on fire, involve toxic materials, etc.

• If it is not about hazards, it is not about safety.



System Safety Overview

• A planned, disciplined, and systematic approach to preventing 
or reducing accidents throughout the life cycle of a system.

• Primary concern is the management of hazards

Hazard Through

identification               analysis
evaluation                   design
elimination                  management
control

• Hazard analysis and control is a continuous, iterative process 
throughout system development and use.
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It’s still hungry … and I’ve been stuffing worms into it all day.
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A General Model of Control

• Software is not unsafe; the control signals it generates can be

• Virtually all software-related accidents have resulted from unsafe 
requirements; not software design/implementation errors

Human Controller



Our current tools are all 50-65 years old
but our technology is very different today

1940 20101980 202019901950 1960 1970 2000

FMEA FTA

HAZOP

Bow Tie

(CCA)

FTA + ETA

ETA
➢ Introduction of computer control

➢ Exponential increases in complexity

➢ New technology

➢ Changes in human roles

Assumes accidents caused 

by component failures
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It’s only a random 

failure, sir! It will 

never happen again.



What Failed Here?

• Navy aircraft were ferrying missiles from one location to 
another.

• One pilot executed a planned test by aiming at aircraft in front 
and firing a dummy missile. 

• Nobody involved knew that the software was designed to 
substitute a different missile if the one that was commanded 
to be fired was not in a good position. 

• In this case, there was an antenna between the dummy 
missile and the target so the software decided to fire a live 
missile located in a different (better) position instead.
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Accident with No Component 
Failures

• Mars Polar Lander

– Have to slow down spacecraft to land safely

– Use Martian atmosphere, parachute, descent 
engines (controlled by software)

– Software knows landed because of sensitive sensors on landing 
legs. Cut off engines when determine have landed.

– But “noise” (false signals) by sensors generated when landing 
legs extended. Not in software requirements.

– Software not supposed to be operating at that time but 
software engineers decided to start early to even out the load 
on processor

– Software thought spacecraft had landed and shut down descent 
engines while still 40 meters above surface
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Warsaw A320 Accident

• Software protects against activating 
thrust reversers when airborne

• Hydroplaning and other factors made the software think the 
plane had not landed

• Pilots could not activate the thrust reversers and ran off end 
of runway into a small hill.
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Boeing 787 Lithium Battery Fires
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Certified based on models 

predicting 787 battery thermal 

problems would occur once in 

10 million flight hours…but two 

batteries overheated in just two 

weeks in 2013



• A module monitors for smoke 
in the battery bay, controls 
fans and ducts to exhaust 
smoke overboard.

• Power unit monitors for low 
battery voltage, shut down 
various electronics, including 
ventilation

• Smoke could not be 
redirected outside cabin

• Shut down various electronics including 
ventilation.

• Smoke could not be redirected outside cabin

Boeing 787 Lithium Battery Fires
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All software requirements were satisfied!
The requirements were unsafe
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Washington State Ferry Problem

• Local rental car company installed a security device to prevent 
theft by disabling cars if car moved when engine stopped

• When ferry moved and cars not running, disabled them.

• Rental cars could not be driven off ferries when got to port



Two Types of Accidents

• Component Failure Accidents

– Single or multiple component failures

– Usually assume random failure

• Component Interaction Accidents

– Arise in interactions among components

– Related to complexity (coupling) in our system designs, which 
leads to system design and system engineering errors

– No components may have “failed”

– Exacerbated by introduction of computers and software but the 
problem is system design errors

• Software allows almost unlimited complexity in our designs
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A BC

Unreliable but not unsafe

(FMEA)
Unsafe but not unreliable

(STPA)

Unreliable and unsafe

(FTA, HAZOP, FMECA, STPA …)

Confusing Safety and Reliability

Preventing Component or Functional 

Failures is Not Enough

Scenarios 

involving failures
Unsafe

scenarios
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Software Impact on Safety

1. Software allows almost unlimited system complexity

• Can no longer 

– Plan, understand, anticipate, and guard against all undesired 
system behavior

– Exhaustively test to get out all design errors

• Context determines whether software is safe

• Ariane 4 software was safe but when reused in Ariane 5, the 
spacecraft exploded

• “SIL” (safety integrity level) concept is technically meaningless

• “Level of Rigor” or “Design Assurance Level” (DAL) has nothing 
to do with the problem

• Not possible to look at software alone and determine “safety”



Safe or Unsafe?



Safety Depends on Context



Software Impact on Safety (2)

2. The role of software in accidents almost always 
involves flawed requirements

– Incomplete or wrong assumptions about operation of controlled 
system or required operation of computer

– Unhandled controlled-system states and environmental 
conditions

• Only trying to get the software “correct” or to make it reliable 
will not make it safer under these conditions

Autopilot 

Expert Requirements Software

Engineer

Design    

of 

Autopilot

→ → →

SIL/LoR



Software has Revolutionized Engineering (2)

2. The role of software in accidents almost always 
involves flawed requirements
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Software changes the role of humans in systems

Typical assumption is that operator error is cause of most
incidents and accidents

– So do something about operator involved (admonish, fire, 
retrain them) 

– Or do something about operators in general

• Marginalize them by putting in more automation

• Rigidify their work by creating more rules and procedures

“Cause” from the American Airlines B-757 accident report (in Cali, 
Columbia):

“Failure of the flight crew to revert to basic radio navigation at 
the time when the FMS-assisted navigation became 
confusing and demanded an excessive workload in a critical 
phase of flight.”



Fumbling for his recline button Ted 

unwittingly instigates a disaster
26



Another Accident Involving Thrust Reversers

• Tu-204, Moscow, 2012

• Red Wings Airlines Flight 
9268

• The soft 1.12g touchdown 
made runway contact a little 
later than usual.

• With the crosswind, this 
meant weight-on-wheels 
switches did not activate and 
the thrust-reverse system 
would not deploy.

© Copyright John Thomas 2016
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Another Accident Involving Thrust Reversers

• Pilots believe the thrust 
reversers are deploying like 
they always do. With the 
limited runway space, they 
quickly engage high engine 
power to stop quicker. 
Instead this accelerated the 
Tu-204 forwards, eventually 
colliding with a highway 
embankment.

© Copyright John Thomas 2016
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Another Accident Involving Thrust Reversers

• Pilots believe the thrust 
reversers are deploying like 
they always do. With the 
limited runway space, they 
quickly engage high engine 
power to stop quicker. 
Instead this accelerates the 
Tu-204 forwards, eventually 
colliding with a highway 
embankment.

In complex systems, human and technical 
considerations cannot be isolated

© Copyright John Thomas 2016
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Human factors

concentrates on the 

“screen out”

Hardware/Software

engineering

concentrates on the 

“screen in”
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Not enough attention on integrated 

system as a whole

(e.g, mode confusion, situation 

awareness errors, inconsistent 

behavior, etc.
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The New Systems View of Operator Error

• Operator error is a symptom, not a cause

• All behavior affected by context (system) in which occurs

– Role of operators is changing in software-intensive systems as is the 
errors they make

– Designing systems in which operator error inevitable and then blame 
accidents on operators rather than designers

• To do something about operator error, must look at system in 
which people work:

– Design of equipment

– Usefulness of procedures

– Existence of goal conflicts and production pressures

• Human error is a symptom of a system that needs to 
be redesigned



Summary of the Problem:

• We need models and tools that handle:

– Hardware and hardware failures

– Software (particularly requirements)

– Human factors

– Interactions among system components

– System design errors 

– Management, regulation, policy 

– Environmental factors

– “Unknown unknowns”

And the interactions among all these things



It’s still hungry … and I’ve been stuffing worms into it all day.



It’s still hungry … and I’ve been stuffing worms into it all day.

We Need New Tools for the New Problems



The Problem is Complexity

Ways to Cope with Complexity

• Analytic Decomposition

• Statistics

• Systems Theory



Physical/Functional: Separate into distinct components

C1

C3

C4

C2

C5

Analytic Decomposition (“Divide and Conquer”)

1. Divide system into separate parts

Behavior: Separate into events over time

E1 E2 E5E3 E4

Components interact

In direct ways

Each event is the direct 

result of the preceding event
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Analytic Decomposition (2)

2. Analyze/examine pieces separately and combine results

C1

C3

C4

C2

C5
E1 E2 E5E3 E4

▪ Assumes such separation does not distort phenomenon

✓ Each component or subsystem operates independently

✓ Components act the same when examined singly as when playing 

their part in the whole

✓ Components/events not subject to feedback loops and non-linear 

interactions

✓ Interactions can be examined pairwise
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Bottom Line

• These assumptions are no longer true in our 

– Tightly coupled

– Software intensive 

– Highly automated

– Connected

engineered systems

• Need a new theoretical basis

– System theory can provide it
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Degree of 

Randomness

Degree of Coupling

Organized

Simplicity

(can use analytic

decomposition)

Unorganized Complexity

(can use statistics)

Organized 

Complexity

[Credit to Gerald Weinberg]



Here comes a paradigm change for safety 
and security!

Safety as a

Failure Problem

Safety as a

Control Problem



Systems Theory

• Developed for systems that are

– Too complex for complete analysis

• Separation into (interacting) subsystems distorts the results

• The most important properties are emergent

– Too organized for statistics

• Too much underlying structure that distorts the statistics

• New technology and designs have no historical information

• First used on ICBM systems of 1950s/1960s 

System Theory was created to provide a more powerful 

way to deal with complexity



Systems Theory (2)

• Focuses on systems taken as a whole, not on parts taken 
separately

• Emergent properties

– Some properties can only be treated adequately in their 
entirety, taking into account all social and technical aspects

“The whole is greater than the sum of the parts”

– These properties arise from relationships among the parts of 
the system 

How they interact and fit together



Emergent properties
(arise from complex interactions)

Process

Process components interact in 

direct and indirect ways

The whole is greater than

the sum of its parts

System Theory



Emergent properties
(arise from complex interactions)

Process

Process components interact in 

direct and indirect ways

Safety and security are emergent properties

The whole is greater than

the sum of its parts



Controller

Controlling emergent properties

(e.g., enforcing safety constraints)

Process

Control Actions Feedback

Individual component behavior

Component interactions

Process components interact in 

direct and indirect ways



Controls/Controllers Enforce Safety Constraints

• Power must never be on when access door open

• Two aircraft/automobiles must not violate minimum separation

• Aircraft must maintain sufficient lift to remain airborne

• Integrity of hull must be maintained on a submarine 

• Toxic chemicals/radiation must not be released from plant

• Workers must not be exposed to workplace hazards

• Public health system must prevent exposure of public to 
contaminated water and food products

• Pressure in a offshore well must be controlled

These are the High-Level Functional Hazard-Related 
Safety/Security Requirements to Address During Design



Controller

Controlling emergent properties

(e.g., enforcing safety constraints)

Process

Control Actions Feedback

Individual component behavior

Component interactions

Process components interact in 

direct and indirect ways

Air Traffic Control:

Safety

Throughput



Controlled Process

Process

Model

Control Actions

(via actuators)

Feedback

(via sensors

Treat the Software/Humans as a Feedback Control System

• Controllers use a process model to 
determine control actions

• Software/human related accidents 
often occur when the process model 
is incorrect

• Captures software errors, human 
errors, flawed requirements …

Controller

Control

Algorithm

49



Mars Polar Lander

Control Actions

(via actuators)

Spacecraft

Process

Model

Feedback

(via sensors

Spacecraft Software

Control

Algorithm

50

Hazard: landing on planet 

with too much force

Spacecraft 
has landed

Turn off descent 
engines

Landing leg 
sensor feedback



Unsafe Control Actions

51

Four types of unsafe control actions

1) Control commands required for safety 

are not given

2) Unsafe commands are given

3) Potentially safe commands but given too 

early, too late

4) Control action stops too soon or applied 

too long (continuous control)

Analysis:

1. Identify potential unsafe control actions

2. Identify why they might be given

3. If safe ones provided, then why not followed?

Controlled Process  

Process

Model

Control

Actions

Controller

Control 

Algorithm

Feedback



System Block Diagram



Spacecraft

Science InstrumentsAttitude and Orbit 
Control System (AOCS)

High-level control structure

Attitude Control 
System (ACS)

Ground Station

Soft X-Ray (SX)

Hard X-Ray (HX)

Soft gamma ray (SG)

Reaction Control 
System (RCS)



Spacecraft

Attitude and Orbit 
Control System (AOCS)

High-level control structure

Attitude Control 
System (ACS)

Ground Station

Reaction Control 
System (RCS)

Software-

hardware 

interactions



Spacecraft

Attitude and Orbit 
Control System (AOCS)

High-level control structure

Attitude Control 
System (ACS)

Ground Station

Reaction Control 
System (RCS)

Human-

Automation 

interactions



Spacecraft

Science Instruments

High-level control structure

Ground Station

Soft X-Ray (SX)

Hard X-Ray (HX)

Soft gamma ray 
(SG)

Human-

hardware 

interactions



Manufacturers

Thomas, 2017 

NASA 

Mission
Control

Human-

human

interactions



Integrated Approach to Safety and Security

• Both concerned with losses (intentional or unintentional)

– Mission assurance (vs. information protection)

– Ensure that critical functions and services are maintained

– New paradigm for safety will work for security too

• May have to add new causes, but rest of process is the same

– A top-down, system engineering approach to designing safety 
and security into systems



Example: Stuxnet
• Loss: Damage to reactor (in this case centrifuges)

• Hazard/Vulnerability: Centrifuges are damaged by spinning too fast

• Constraint to be Enforced: Centrifuges must never spin above 
maximum speed

• Hazardous control action: Issuing increase speed command when 
already spinning at maximum speed

• One potential causal scenario:

– Incorrect process model: thinks spinning at less than maximum 
speed

• Could be inadvertent or deliberate

• Potential controls:

– Mechanical limiters (interlock), Analog RPM gauge

Focus on preventing hazardous state 

(not keeping intruders out)



STAMP
(System-Theoretic Accident Model and Processes)

• A new, more powerful accident/loss causality model

• Based on systems theory, not reliability theory

• Defines accidents/losses as a dynamic control problem (vs. a 
failure problem)

• Applies to VERY complex systems

• Includes 

– Scenarios from traditional hazard analysis methods (failure events)

– Component interaction accidents

– Software and system design errors

– Human errors

– Entire socio-technical system (not just technical part)              



STAMP: Theoretical Causality Model

Accident Analysis

CAST

Hazard Analysis

STPA

System Engineering

MBSE

SpecTRM & …

Risk Management

Operations

Organizational Design (SMS)

Identifying Leading

Indicators

Organizational/Cultural

Risk Analysis

Tools

Processes

Certification and Acquisition

Security Analysis

STPA-Sec

Regulation



How is it being used?
Does it work?

Is it useful?



Is it Practical?

• STPA has been or is being used in a large variety of industries

– Automobiles (>80% use) 

– Aircraft and UAVs (extensive use and growing)

– Defense systems

– Air Traffic Control

– Spacecraft

– Medical Devices and Hospital Safety

– Chemical plants

– Oil and Gas

– Nuclear and Electric Power

– Robotic Manufacturing / Workplace Safety

– Pharmaceuticals

– etc.

• New international standards for STPA or in development
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Evaluations and Estimates of ROI

• Hundreds of evaluations and comparison with traditional 
approaches used now 

– Controlled scientific and empirical (in industry)

– All show STPA is better (identifies more critical requirements or 
design flaws)

– All (that measured) show STPA requires orders of magnitude 
fewer resources than traditional techniques

– Successfully finds accidents before they occur

• ROI estimates only beginning but one large defense industry 
contractor claims they are seeing 15-20% return on 
investment when using STPA



To Make Progress We Need to:

• Develop and use different approaches that match the world of 
engineering today and the problems today

• Consider the entire sociotechnical system

• Focus on building safety/security in rather than 
assuring/measuring it after the design is completed

“The best way to predict the future is to create it.”

Abraham Lincoln

Start from the problem, not a solution 

(avoid feeding worms to the baby)



More Information
• http://psas.scripts.mit.edu (papers, presentations from conferences, 

tutorial slides, examples, etc.)

Free download: 
http://mitpress.mit.edu/books/engin
eering-safer-world

Free download: 
http://sunnyday.mit.edu/CAST-Handbook.pdf

NANCY G. LEVESON

JOHN P. THOMAS

MARCH 2018

http://psas.scripts.mit.edu

(65,000+ downloads in 24 mos.

Japanese, Chinese, and 

Korean versions)

http://psas.scripts.mit.edu/
https://mitpress.mit.edu/books/engineering-safer-world
http://sunnyday.mit.edu/CAST-Handbook.pdf
http://psas.scripts.mit.edu/


STAMP Virtual Workshop

July 20 to Aug. 7

Tutorials, industry presentations, research presentations

PSAS website: http://psas.scripts.mit.edu



Standard Safety Approach does not Handle

• Component interaction accidents

• Systemic factors (affecting all components and barriers)

• Software and software requirements errors

• Human behavior (in a non-superficial way)

• System design errors

• Indirect or non-linear interactions and complexity

• Culture and management

• Migration of systems toward greater risk over time (e.g., in search 
for greater efficiency and productivity)



System 

safety 

engineer 



• Old Assumption: accidents are caused by component failure

• New Reality: Accidents involving software usually do not 
involve component failure.

• Accidents are not the result of random failure or even 
errors/faults.



A Broad View of “Control”

Component failures and unsafe interactions may be “controlled” 
through design 

(e.g., redundancy, interlocks, fail-safe design)

or through process
– Manufacturing processes and procedures

– Maintenance processes

– Operations

or through social controls

– Governmental or regulatory

– Culture 

– Insurance

– Law and the courts

– Individual self-interest (incentive structure)



Warsaw (Reverse Thrusters) 
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Hazard: Inadequate a/c

deceleration after landing

Aircraft

Pilot

Decision

Making

Process

Model

Software Controller

Control

Algorithm

Process

Model

Plane has 
landed

Turn on reverse
thrusters

Ignore 
command

Plane has 
not landed

Feedback 
indicates plane 
has not landed



Moscow (Reverse Thrusters)

73

Hazard: Inadequate Deceleration

after Landing

Aircraft

Pilot

Decision

Making

Process

Model

Software Controller

Control

Algorithm

Process

Model

Plane has 
landed

Ignore reverse 
thruster  
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Plane has 
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Feedback 
indicates plane 
has not landed



Moscow (Reverse Thrusters)
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Hazard: Inadequate Deceleration

after Landing

Aircraft

Pilot

Decision

Making

Process

Model

Software Controller

Control

Algorithm

Process

Model

Plane has 
landed

Ignore reverse 
thruster  

command

Plane has 
not landed

Feedback 
indicates plane 
has not landed

Reverse thrusters 
will come on

Engage high 
engine power

Short runway, 
need more 

power to stop

Engage high 
engine power

Engage 
reverse thrust



Missile Release Mishap
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Hazard: Friendly Fire

Command Authority

Aircraft

Pilot

Decision

Making

Process

Model

Software Controller

Control

Algorithm

Process

Model

Live missile in 
better position to 

hit target

Perform test 
with dummy 

missile

Launch 
dummy missile

Optimize 
missile success

Launch live 
missile



Boeing Lithium-ion Batteries
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Hazard: Fire and Smoke

Battery Bay

Ventilation

Smoke Controller

Decision

Making

Process

Model

Fire Controller

Control

Algorithm
Process

Model

Turn on 
ventilation

Fire detected
Smoke 

detected

Turn off 
ventilation

• Special investigation of

- Multiple controllers of same process

- Boundaries between processes with multiple controllers 



Unsafe Control Actions
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Four types of unsafe control actions

1) Control commands required for safety 

are not given

2) Unsafe commands are given

3) Potentially safe commands but given too 

early, too late

4) Control action stops too soon or applied 

too long (continuous control)

Analysis:

1. Identify potential unsafe control actions

2. Identify why they might be given

3. If safe ones provided, then why not followed?

Controlled Process  

Process

Model

Control

Actions

Controller

Control 

Algorithm

Feedback





Safety as a Dynamic Control Problem (STAMP)

• Hazards result from lack of enforcement of safety constraints in 
system design and operations

• Goal is to control the behavior of the components and systems as a 
whole to ensure safety constraints are enforced in the operating 
system

• A change in emphasis:

Increase component reliability (prevent failures)

Enforce safety/security constraints on system behavior 

(note that enforcing constraints might require preventing failures or 
handling them but includes more than that)


