
MIT

What You “Know” about

Software and Safety is Probably

Wrong
Prof. Nancy G. Leveson

© Nancy G. Leveson, 7/2020

Understanding The Problem

“It’s never what we don’t know that stops us.
It’s what we do know that just ain’t so.”

General Definition of “Safety”

• Accident = Mishap = Loss: Any undesired and
unplanned event that results in a loss

– e.g., loss of human life or injury, property damage,
environmental pollution, mission loss, negative business
impact (damage to reputation, etc.), product launch delay,
legal entanglements, etc. [MIL-STD-882]

– Includes inadvertent and intentional losses (security)

• System goals vs. constraints (limits on how can achieve the
goals)

• Safety: Absence of losses

Safety Engineering is about Hazards

• Hazard: A system state or set of conditions that, together with
a particular set of worst-case environmental conditions, will
lead to an accident.

• Examples:

– Release of nuclear materials

– Friendly fire

– Loss of control of an aircraft

– Violation of minimum separation between autos/planes

• Software is not unsafe. It can contribute to a hazard, but it
does not explode, catch on fire, involve toxic materials, etc.

• If it is not about hazards, it is not about safety.

System Safety Overview

• A planned, disciplined, and systematic approach to preventing
or reducing accidents throughout the life cycle of a system.

• Primary concern is the management of hazards

Hazard Through

identification analysis
evaluation design
elimination management
control

• Hazard analysis and control is a continuous, iterative process
throughout system development and use.

© Copyright Nancy Leveson, Aug. 2006

It’s still hungry … and I’ve been stuffing worms into it all day.

Computer Controller

Controlled Process

Sensor(s)Actuator(s)
CYBER/Human

PHYSICAL

Control

Signal
Feedback

Signal

Control

Action
Feedback

A General Model of Control

• Software is not unsafe; the control signals it generates can be

• Virtually all software-related accidents have resulted from unsafe
requirements; not software design/implementation errors

Human Controller

Our current tools are all 50-65 years old
but our technology is very different today

1940 20101980 202019901950 1960 1970 2000

FMEA FTA

HAZOP

Bow Tie

(CCA)

FTA + ETA

ETA
➢ Introduction of computer control

➢ Exponential increases in complexity

➢ New technology

➢ Changes in human roles

Assumes accidents caused

by component failures

© Copyright Nancy Leveson, June 2011

It’s only a random

failure, sir! It will

never happen again.

What Failed Here?

• Navy aircraft were ferrying missiles from one location to
another.

• One pilot executed a planned test by aiming at aircraft in front
and firing a dummy missile.

• Nobody involved knew that the software was designed to
substitute a different missile if the one that was commanded
to be fired was not in a good position.

• In this case, there was an antenna between the dummy
missile and the target so the software decided to fire a live
missile located in a different (better) position instead.

11

Accident with No Component
Failures

• Mars Polar Lander

– Have to slow down spacecraft to land safely

– Use Martian atmosphere, parachute, descent
engines (controlled by software)

– Software knows landed because of sensitive sensors on landing
legs. Cut off engines when determine have landed.

– But “noise” (false signals) by sensors generated when landing
legs extended. Not in software requirements.

– Software not supposed to be operating at that time but
software engineers decided to start early to even out the load
on processor

– Software thought spacecraft had landed and shut down descent
engines while still 40 meters above surface

12

Warsaw A320 Accident

• Software protects against activating
thrust reversers when airborne

• Hydroplaning and other factors made the software think the
plane had not landed

• Pilots could not activate the thrust reversers and ran off end
of runway into a small hill.

13

Boeing 787 Lithium Battery Fires

14
© Copyright John Thomas 2016

Certified based on models

predicting 787 battery thermal

problems would occur once in

10 million flight hours…but two

batteries overheated in just two

weeks in 2013

• A module monitors for smoke
in the battery bay, controls
fans and ducts to exhaust
smoke overboard.

• Power unit monitors for low
battery voltage, shut down
various electronics, including
ventilation

• Smoke could not be
redirected outside cabin

• Shut down various electronics including
ventilation.

• Smoke could not be redirected outside cabin

Boeing 787 Lithium Battery Fires

15

All software requirements were satisfied!
The requirements were unsafe

© Copyright John Thomas 2016

Washington State Ferry Problem

• Local rental car company installed a security device to prevent
theft by disabling cars if car moved when engine stopped

• When ferry moved and cars not running, disabled them.

• Rental cars could not be driven off ferries when got to port

Two Types of Accidents

• Component Failure Accidents

– Single or multiple component failures

– Usually assume random failure

• Component Interaction Accidents

– Arise in interactions among components

– Related to complexity (coupling) in our system designs, which
leads to system design and system engineering errors

– No components may have “failed”

– Exacerbated by introduction of computers and software but the
problem is system design errors

• Software allows almost unlimited complexity in our designs

17

A BC

Unreliable but not unsafe

(FMEA)
Unsafe but not unreliable

(STPA)

Unreliable and unsafe

(FTA, HAZOP, FMECA, STPA …)

Confusing Safety and Reliability

Preventing Component or Functional

Failures is Not Enough

Scenarios

involving failures
Unsafe

scenarios

18

Software Impact on Safety

1. Software allows almost unlimited system complexity

• Can no longer

– Plan, understand, anticipate, and guard against all undesired
system behavior

– Exhaustively test to get out all design errors

• Context determines whether software is safe

• Ariane 4 software was safe but when reused in Ariane 5, the
spacecraft exploded

• “SIL” (safety integrity level) concept is technically meaningless

• “Level of Rigor” or “Design Assurance Level” (DAL) has nothing
to do with the problem

• Not possible to look at software alone and determine “safety”

Safe or Unsafe?

Safety Depends on Context

Software Impact on Safety (2)

2. The role of software in accidents almost always
involves flawed requirements

– Incomplete or wrong assumptions about operation of controlled
system or required operation of computer

– Unhandled controlled-system states and environmental
conditions

• Only trying to get the software “correct” or to make it reliable
will not make it safer under these conditions

Autopilot

Expert Requirements Software

Engineer

Design

of

Autopilot

→ → →

SIL/LoR

Software has Revolutionized Engineering (2)

2. The role of software in accidents almost always
involves flawed requirements

– Incomplete or wrong assumptions about operation of controlled
system or required operation of computer

– Unhandled controlled-system states and environmental
conditions

• Only trying to get the software “correct” or to make it reliable
will not make it safer under these conditions

Autopilot

Expert Requirements Software

Engineer

Design

of

Autopilot

→ → →

Software has Revolutionized Engineering (2)

2. The role of software in accidents almost always
involves flawed requirements

– Incomplete or wrong assumptions about operation of controlled
system or required operation of computer

– Unhandled controlled-system states and environmental
conditions

• Only trying to get the software “correct” or to make it reliable
will not make it safer under these conditions

Autopilot

Expert Requirements Software

Engineer

Design

of

Autopilot

→ → →

Software changes the role of humans in systems

Typical assumption is that operator error is cause of most
incidents and accidents

– So do something about operator involved (admonish, fire,
retrain them)

– Or do something about operators in general

• Marginalize them by putting in more automation

• Rigidify their work by creating more rules and procedures

“Cause” from the American Airlines B-757 accident report (in Cali,
Columbia):

“Failure of the flight crew to revert to basic radio navigation at
the time when the FMS-assisted navigation became
confusing and demanded an excessive workload in a critical
phase of flight.”

Fumbling for his recline button Ted

unwittingly instigates a disaster
26

Another Accident Involving Thrust Reversers

• Tu-204, Moscow, 2012

• Red Wings Airlines Flight
9268

• The soft 1.12g touchdown
made runway contact a little
later than usual.

• With the crosswind, this
meant weight-on-wheels
switches did not activate and
the thrust-reverse system
would not deploy.

© Copyright John Thomas 2016

27

Another Accident Involving Thrust Reversers

• Pilots believe the thrust
reversers are deploying like
they always do. With the
limited runway space, they
quickly engage high engine
power to stop quicker.
Instead this accelerated the
Tu-204 forwards, eventually
colliding with a highway
embankment.

© Copyright John Thomas 2016

28

Another Accident Involving Thrust Reversers

• Pilots believe the thrust
reversers are deploying like
they always do. With the
limited runway space, they
quickly engage high engine
power to stop quicker.
Instead this accelerates the
Tu-204 forwards, eventually
colliding with a highway
embankment.

In complex systems, human and technical
considerations cannot be isolated

© Copyright John Thomas 2016

29

Human factors

concentrates on the

“screen out”

Hardware/Software

engineering

concentrates on the

“screen in”

30

Not enough attention on integrated

system as a whole

(e.g, mode confusion, situation

awareness errors, inconsistent

behavior, etc.

31

The New Systems View of Operator Error

• Operator error is a symptom, not a cause

• All behavior affected by context (system) in which occurs

– Role of operators is changing in software-intensive systems as is the
errors they make

– Designing systems in which operator error inevitable and then blame
accidents on operators rather than designers

• To do something about operator error, must look at system in
which people work:

– Design of equipment

– Usefulness of procedures

– Existence of goal conflicts and production pressures

• Human error is a symptom of a system that needs to
be redesigned

Summary of the Problem:

• We need models and tools that handle:

– Hardware and hardware failures

– Software (particularly requirements)

– Human factors

– Interactions among system components

– System design errors

– Management, regulation, policy

– Environmental factors

– “Unknown unknowns”

And the interactions among all these things

It’s still hungry … and I’ve been stuffing worms into it all day.

It’s still hungry … and I’ve been stuffing worms into it all day.

We Need New Tools for the New Problems

The Problem is Complexity

Ways to Cope with Complexity

• Analytic Decomposition

• Statistics

• Systems Theory

Physical/Functional: Separate into distinct components

C1

C3

C4

C2

C5

Analytic Decomposition (“Divide and Conquer”)

1. Divide system into separate parts

Behavior: Separate into events over time

E1 E2 E5E3 E4

Components interact

In direct ways

Each event is the direct

result of the preceding event

37

Analytic Decomposition (2)

2. Analyze/examine pieces separately and combine results

C1

C3

C4

C2

C5
E1 E2 E5E3 E4

▪ Assumes such separation does not distort phenomenon

✓ Each component or subsystem operates independently

✓ Components act the same when examined singly as when playing

their part in the whole

✓ Components/events not subject to feedback loops and non-linear

interactions

✓ Interactions can be examined pairwise

38

Bottom Line

• These assumptions are no longer true in our

– Tightly coupled

– Software intensive

– Highly automated

– Connected

engineered systems

• Need a new theoretical basis

– System theory can provide it

39

Degree of

Randomness

Degree of Coupling

Organized

Simplicity

(can use analytic

decomposition)

Unorganized Complexity

(can use statistics)

Organized

Complexity

[Credit to Gerald Weinberg]

Here comes a paradigm change for safety
and security!

Safety as a

Failure Problem

Safety as a

Control Problem

Systems Theory

• Developed for systems that are

– Too complex for complete analysis

• Separation into (interacting) subsystems distorts the results

• The most important properties are emergent

– Too organized for statistics

• Too much underlying structure that distorts the statistics

• New technology and designs have no historical information

• First used on ICBM systems of 1950s/1960s

System Theory was created to provide a more powerful

way to deal with complexity

Systems Theory (2)

• Focuses on systems taken as a whole, not on parts taken
separately

• Emergent properties

– Some properties can only be treated adequately in their
entirety, taking into account all social and technical aspects

“The whole is greater than the sum of the parts”

– These properties arise from relationships among the parts of
the system

How they interact and fit together

Emergent properties
(arise from complex interactions)

Process

Process components interact in

direct and indirect ways

The whole is greater than

the sum of its parts

System Theory

Emergent properties
(arise from complex interactions)

Process

Process components interact in

direct and indirect ways

Safety and security are emergent properties

The whole is greater than

the sum of its parts

Controller

Controlling emergent properties

(e.g., enforcing safety constraints)

Process

Control Actions Feedback

Individual component behavior

Component interactions

Process components interact in

direct and indirect ways

Controls/Controllers Enforce Safety Constraints

• Power must never be on when access door open

• Two aircraft/automobiles must not violate minimum separation

• Aircraft must maintain sufficient lift to remain airborne

• Integrity of hull must be maintained on a submarine

• Toxic chemicals/radiation must not be released from plant

• Workers must not be exposed to workplace hazards

• Public health system must prevent exposure of public to
contaminated water and food products

• Pressure in a offshore well must be controlled

These are the High-Level Functional Hazard-Related
Safety/Security Requirements to Address During Design

Controller

Controlling emergent properties

(e.g., enforcing safety constraints)

Process

Control Actions Feedback

Individual component behavior

Component interactions

Process components interact in

direct and indirect ways

Air Traffic Control:

Safety

Throughput

Controlled Process

Process

Model

Control Actions

(via actuators)

Feedback

(via sensors

Treat the Software/Humans as a Feedback Control System

• Controllers use a process model to
determine control actions

• Software/human related accidents
often occur when the process model
is incorrect

• Captures software errors, human
errors, flawed requirements …

Controller

Control

Algorithm

49

Mars Polar Lander

Control Actions

(via actuators)

Spacecraft

Process

Model

Feedback

(via sensors

Spacecraft Software

Control

Algorithm

50

Hazard: landing on planet

with too much force

Spacecraft
has landed

Turn off descent
engines

Landing leg
sensor feedback

Unsafe Control Actions

51

Four types of unsafe control actions

1) Control commands required for safety

are not given

2) Unsafe commands are given

3) Potentially safe commands but given too

early, too late

4) Control action stops too soon or applied

too long (continuous control)

Analysis:

1. Identify potential unsafe control actions

2. Identify why they might be given

3. If safe ones provided, then why not followed?

Controlled Process

Process

Model

Control

Actions

Controller

Control

Algorithm

Feedback

System Block Diagram

Spacecraft

Science InstrumentsAttitude and Orbit
Control System (AOCS)

High-level control structure

Attitude Control
System (ACS)

Ground Station

Soft X-Ray (SX)

Hard X-Ray (HX)

Soft gamma ray (SG)

Reaction Control
System (RCS)

Spacecraft

Attitude and Orbit
Control System (AOCS)

High-level control structure

Attitude Control
System (ACS)

Ground Station

Reaction Control
System (RCS)

Software-

hardware

interactions

Spacecraft

Attitude and Orbit
Control System (AOCS)

High-level control structure

Attitude Control
System (ACS)

Ground Station

Reaction Control
System (RCS)

Human-

Automation

interactions

Spacecraft

Science Instruments

High-level control structure

Ground Station

Soft X-Ray (SX)

Hard X-Ray (HX)

Soft gamma ray
(SG)

Human-

hardware

interactions

Manufacturers

Thomas, 2017

NASA

Mission
Control

Human-

human

interactions

Integrated Approach to Safety and Security

• Both concerned with losses (intentional or unintentional)

– Mission assurance (vs. information protection)

– Ensure that critical functions and services are maintained

– New paradigm for safety will work for security too

• May have to add new causes, but rest of process is the same

– A top-down, system engineering approach to designing safety
and security into systems

Example: Stuxnet
• Loss: Damage to reactor (in this case centrifuges)

• Hazard/Vulnerability: Centrifuges are damaged by spinning too fast

• Constraint to be Enforced: Centrifuges must never spin above
maximum speed

• Hazardous control action: Issuing increase speed command when
already spinning at maximum speed

• One potential causal scenario:

– Incorrect process model: thinks spinning at less than maximum
speed

• Could be inadvertent or deliberate

• Potential controls:

– Mechanical limiters (interlock), Analog RPM gauge

Focus on preventing hazardous state

(not keeping intruders out)

STAMP
(System-Theoretic Accident Model and Processes)

• A new, more powerful accident/loss causality model

• Based on systems theory, not reliability theory

• Defines accidents/losses as a dynamic control problem (vs. a
failure problem)

• Applies to VERY complex systems

• Includes

– Scenarios from traditional hazard analysis methods (failure events)

– Component interaction accidents

– Software and system design errors

– Human errors

– Entire socio-technical system (not just technical part)

STAMP: Theoretical Causality Model

Accident Analysis

CAST

Hazard Analysis

STPA

System Engineering

MBSE

SpecTRM & …

Risk Management

Operations

Organizational Design (SMS)

Identifying Leading

Indicators

Organizational/Cultural

Risk Analysis

Tools

Processes

Certification and Acquisition

Security Analysis

STPA-Sec

Regulation

How is it being used?
Does it work?

Is it useful?

Is it Practical?

• STPA has been or is being used in a large variety of industries

– Automobiles (>80% use)

– Aircraft and UAVs (extensive use and growing)

– Defense systems

– Air Traffic Control

– Spacecraft

– Medical Devices and Hospital Safety

– Chemical plants

– Oil and Gas

– Nuclear and Electric Power

– Robotic Manufacturing / Workplace Safety

– Pharmaceuticals

– etc.

• New international standards for STPA or in development

63

Evaluations and Estimates of ROI

• Hundreds of evaluations and comparison with traditional
approaches used now

– Controlled scientific and empirical (in industry)

– All show STPA is better (identifies more critical requirements or
design flaws)

– All (that measured) show STPA requires orders of magnitude
fewer resources than traditional techniques

– Successfully finds accidents before they occur

• ROI estimates only beginning but one large defense industry
contractor claims they are seeing 15-20% return on
investment when using STPA

To Make Progress We Need to:

• Develop and use different approaches that match the world of
engineering today and the problems today

• Consider the entire sociotechnical system

• Focus on building safety/security in rather than
assuring/measuring it after the design is completed

“The best way to predict the future is to create it.”

Abraham Lincoln

Start from the problem, not a solution

(avoid feeding worms to the baby)

More Information
• http://psas.scripts.mit.edu (papers, presentations from conferences,

tutorial slides, examples, etc.)

Free download:
http://mitpress.mit.edu/books/engin
eering-safer-world

Free download:
http://sunnyday.mit.edu/CAST-Handbook.pdf

NANCY G. LEVESON

JOHN P. THOMAS

MARCH 2018

http://psas.scripts.mit.edu

(65,000+ downloads in 24 mos.

Japanese, Chinese, and

Korean versions)

http://psas.scripts.mit.edu/
https://mitpress.mit.edu/books/engineering-safer-world
http://sunnyday.mit.edu/CAST-Handbook.pdf
http://psas.scripts.mit.edu/

STAMP Virtual Workshop

July 20 to Aug. 7

Tutorials, industry presentations, research presentations

PSAS website: http://psas.scripts.mit.edu

Standard Safety Approach does not Handle

• Component interaction accidents

• Systemic factors (affecting all components and barriers)

• Software and software requirements errors

• Human behavior (in a non-superficial way)

• System design errors

• Indirect or non-linear interactions and complexity

• Culture and management

• Migration of systems toward greater risk over time (e.g., in search
for greater efficiency and productivity)

System

safety

engineer

• Old Assumption: accidents are caused by component failure

• New Reality: Accidents involving software usually do not
involve component failure.

• Accidents are not the result of random failure or even
errors/faults.

A Broad View of “Control”

Component failures and unsafe interactions may be “controlled”
through design

(e.g., redundancy, interlocks, fail-safe design)

or through process
– Manufacturing processes and procedures

– Maintenance processes

– Operations

or through social controls

– Governmental or regulatory

– Culture

– Insurance

– Law and the courts

– Individual self-interest (incentive structure)

Warsaw (Reverse Thrusters)

72

Hazard: Inadequate a/c

deceleration after landing

Aircraft

Pilot

Decision

Making

Process

Model

Software Controller

Control

Algorithm

Process

Model

Plane has
landed

Turn on reverse
thrusters

Ignore
command

Plane has
not landed

Feedback
indicates plane
has not landed

Moscow (Reverse Thrusters)

73

Hazard: Inadequate Deceleration

after Landing

Aircraft

Pilot

Decision

Making

Process

Model

Software Controller

Control

Algorithm

Process

Model

Plane has
landed

Ignore reverse
thruster

command

Plane has
not landed

Feedback
indicates plane
has not landed

Moscow (Reverse Thrusters)

74

Hazard: Inadequate Deceleration

after Landing

Aircraft

Pilot

Decision

Making

Process

Model

Software Controller

Control

Algorithm

Process

Model

Plane has
landed

Ignore reverse
thruster

command

Plane has
not landed

Feedback
indicates plane
has not landed

Reverse thrusters
will come on

Engage high
engine power

Short runway,
need more

power to stop

Engage high
engine power

Engage
reverse thrust

Missile Release Mishap

75

Hazard: Friendly Fire

Command Authority

Aircraft

Pilot

Decision

Making

Process

Model

Software Controller

Control

Algorithm

Process

Model

Live missile in
better position to

hit target

Perform test
with dummy

missile

Launch
dummy missile

Optimize
missile success

Launch live
missile

Boeing Lithium-ion Batteries

76

Hazard: Fire and Smoke

Battery Bay

Ventilation

Smoke Controller

Decision

Making

Process

Model

Fire Controller

Control

Algorithm
Process

Model

Turn on
ventilation

Fire detected
Smoke

detected

Turn off
ventilation

• Special investigation of

- Multiple controllers of same process

- Boundaries between processes with multiple controllers

Unsafe Control Actions

77

Four types of unsafe control actions

1) Control commands required for safety

are not given

2) Unsafe commands are given

3) Potentially safe commands but given too

early, too late

4) Control action stops too soon or applied

too long (continuous control)

Analysis:

1. Identify potential unsafe control actions

2. Identify why they might be given

3. If safe ones provided, then why not followed?

Controlled Process

Process

Model

Control

Actions

Controller

Control

Algorithm

Feedback

Safety as a Dynamic Control Problem (STAMP)

• Hazards result from lack of enforcement of safety constraints in
system design and operations

• Goal is to control the behavior of the components and systems as a
whole to ensure safety constraints are enforced in the operating
system

• A change in emphasis:

Increase component reliability (prevent failures)

Enforce safety/security constraints on system behavior

(note that enforcing constraints might require preventing failures or
handling them but includes more than that)

